

Extra Challenge

I can divide numbers by a two-digit number using short division.

Match the race car to the correct helmet.

Extra Challenge Answers

Question	Answer
	Match the race car to the correct helmet.
	$ \begin{array}{c} $

			1	1	٦Ī				[]
	Th	Н	Т	0			Th	Н	Т	0
Lowest Odd Number						Lowest Odd Number				
Highest Even						Highest Even				
Number						Number				
Nearest Number					1	Nearest Number				
to 5000						to 5000				
			1		1					
	Th	Н	т	0			Th	Н	т	0
Lowest Odd						Lowest Odd				
Number						Number				
Highest Even Number						Highest Even Number				
Nearest Number					1	Nearest Number				
to 5000						to 5000				
			1	1	1					
	Th	Н	Т	0			Th	Н	т	0
Lowest Odd						Lowest Odd				
Number						Number				
Highest Even						Highest Even				
Number						Number				
to 5000						to 5000				
					- · - †		· · · · · · · · · · · · · · · · · · ·		~ 	
	Th	н	т	о			Th	н	т	о
Lowest Odd					1	Lowest Odd				
Number						Number				
Highest Even						Highest Even				
Number						Number				
Nearest Number to 5000						Nearest Number to 5000				
					1					
	Th	Н	т	0			Th	Н	т	0
Lowest Odd						Lowest Odd				
Number						Number				
Highest Even Number						Highest Even Number				
Nearest Number					1	Nearest Number				
to 5000						to 5000				

1)				
-,	Course	Total Race Length (metres)	Number of Laps	Lap Length (metres)
	Goldrock	9375	5	1875
	Badcopse	7612	11	692
	Capse	8743	7	1249
	Toby's Tor	9711	13	747

- 3) 36 race weekends with 8 tyres left over.
- Accept an explanation that shows that Fernando has incorrectly divided 21 (hundreds) by 11 to equal 2 with one remainder. He then exchanged a remainder of 1 (hundreds) into 10 (tens) and regrouped this in the tens column. The correct answer should be 196.

2) Accept any correct explanation that shows that Daniel is incorrect. For example, 3000 ÷ 14 = 214 r4. As there is a remainder of 4, this means that he has completed 214 full laps and he will be four minutes (out of 14) into his next lap at the end of the 50 hours. Daniel has incorrectly rounded his answer up to the next whole number. His answer should be 214 as he did not complete the 215th lap.

1)	Prediction reasoning might include	spotting mult	iples of 5 or 10	or identifuino d	odd and even numbers
-,	realed of realed ing ingrie menual	op o conny mono			

1440 ÷ 11 = 130r10	1606 ÷ 11 = 146	3000 ÷ 11 = 272r7	4200 ÷ 11 = 381r8	7925 ÷ 11 = 720r5
1440 ÷ 12 = 120	1606 ÷ 12 = 133r10	3000 ÷ 12 = 250	4200 ÷ 12 = 350	7925 ÷ 12 = 660r5
1440 ÷ 15 = 96	1606 ÷ 15 = 107r1	3000 ÷ 15 = 200	4200 ÷ 15 = 280	7925 ÷ 15 = 528r5
1440 ÷ 20 = 72	1606 ÷ 20 = 80r6	3000 ÷ 20 = 150	4200 ÷ 20 = 210	7925 ÷ 20 = 396r4
1440 ÷ 25 = 57r15	1606 ÷ 25 = 64r6	3000 ÷ 25 = 120	4200 ÷ 25 = 168	7925 ÷ 25 = 317

2)	=	846 seconds
	=	282 seconds
	=	47 seconds

1) Use short division to calculate the length of one lap in each race. **Total Race** Lap Length Course Number of Laps (metres) Length (metres) Goldrock 9375 5 Badcopse 7612 11 7 Capse 8743 Toby's Tor 9711 13 2) Race fans are transported from the car park to the circuit by minibus. The minibus seats 12 people. How many journeys will the bus need to make if 4110 fans use the car park? 3) A team uses forty tyres each race weekend. The team has ordered 1448 tyres. How many race weekends can they attend? Will there be any tyres left over?

 Organisers for a race must decide how to organise the seats. Organise the seats in three different ways choosing a number of rows (divisor) and a number of seats (dividend) from the lists. Predict whether your answer will have a remainder or not. Can you explain your reasons? Finally, calculate how many seats will be in each row.

Number of Rows	Number of Seats
11	1440
12	1606
15	3000
20	4200
25	7925

Number of Rows	Number of Seats	Remainder Prediction	Final Calculation

2) The information below shows some times for different vehicles completing laps of Bashmound Circuit. If one vehicle equates to one lap, can you work out the lap time for each vehicle?

	=	9306 seconds
	=	48 ¹⁰⁰⁰⁰⁵
800 800 800 800 800	=	

-48 C	=	
	=	
625	=	

1) Use short division to calculate the length of one lap in each race.

Course	Total Race Length (metres)	Number of Laps	Lap Length (metres)
Goldrock	9375	5	
Badcopse	7612	11	
Capse	8743	7	
Toby's Tor	9711	13	

- 2) Race fans are transported from the car park to the circuit by minibus. The minibus seats 12 people. How many journeys will the bus need to make if 4110 fans use the car park?
- 3) A team uses forty tyres each race weekend. The team has ordered 1448 tyres. How many race weekends can they attend? Will there be any tyres left over?

 Felicity has carried out this short division to calculate the number of seats per row in Capse Grandstand. There are 2156 seats in eleven rows. She did not expect his answer to have a remainder so thinks that she might have made a mistake. Explain Felicity's error and work out the correct answer.

2) Daniel is working out how many full laps of Goldrock Circuit he could complete in 50 hours. Each lap takes him 14 minutes to complete. He has correctly worked out that 50 hours is 3000 minutes.

I can complete 215 full laps in 50 hours.

Do you agree? Explain your answer.

1) Use short division to calculate the length of one lap in each race.

Course	Total Race Length (metres)	Number of Laps	Lap Length (metres)
Goldrock	9375	5	
Badcopse	7612	11	
Capse	8743	7	
Toby's Tor	9711	13	

- 2) Race fans are transported from the car park to the circuit by minibus. The minibus seats12 people. How many journeys will the bus need to make if 4110 fans use the car park?
- 3) A team uses forty tyres each race weekend. The team has ordered 1448 tyres. How many race weekends can they attend? Will there be any tyres left over?

 Felicity has carried out this short division to calculate the number of seats per row in Capse Grandstand. There are 2156 seats in eleven rows. She did not expect his answer to have a remainder so thinks that she might have made a mistake. Explain Felicity's error and work out the correct answer.

2) Daniel is working out how many full laps of Goldrock Circuit he could complete in 50 hours. Each lap takes him 14 minutes to complete. He has correctly worked out that 50 hours is 3000 minutes.

I can complete 215 full laps in 50 hours.

Do you agree? Explain your answer.

 Organisers for a race must decide how to organise the seats. Organise the seats in three different ways choosing a number of rows (divisor) and a number of seats (dividend) from the lists. Predict whether your answer will have a remainder or not. Can you explain your reasons? Finally, calculate how many seats will be in each row.

Number of Rows	Number of Seats
11	1440
12	1606
15	3000
20	4200
25	7925

2) The information below shows some times for different vehicles completing laps of Bashmound Circuit. If one vehicle equates to one lap, can you work out the lap time for each vehicle?

 Organisers for a race must decide how to organise the seats. Organise the seats in three different ways choosing a number of rows (divisor) and a number of seats (dividend) from the lists. Predict whether your answer will have a remainder or not. Can you explain your reasons? Finally, calculate how many seats will be in each row.

Number of Rows	Number of Seats
11	1440
12	1606
15	3000
20	4200
25	7925

2) The information below shows some times for different vehicles completing laps of Bashmound Circuit. If one vehicle equates to one lap, can you work out the lap time for each vehicle?

-48		
-48 routes -48 routes		
	_	0306 seconds
	-	9500 seconds
- 48 remes		
	=	-0= -48 rause
625 625 625 625 625 625	=	
-48	=	
	=	
620	=	

Engines Ready Game

I can divide numbers by a two-digit number using short division.

Place your race cars on the start square. Taking turns, roll the dice and move the desired number of spaces. Complete the calculation that you land on using the Short Division Record Sheet. Once you have completed the calculation, ask your partner to check the calculation using a calculator. If you have the incorrect answer, you will need to move your race car back to where you began your turn. The first race car to the end of the track wins.

Race Track Game

I can divide numbers by a two-digit number using short division.

Short Division Record Sheet

 _							_	_															
			I	can	divi	de n	um	ıber	s by	a tv	vo-d	igit	num	ber I	using	sho	rt div	visior	ι.	О	O	0	
 1	1																		[
1	1	1		1	I										1		1	1		1			

Top Speed (mph)	1141 ÷ 20	Top Speed (mph)	4284 ÷ 11		Top Speed (mph)	5825 ÷ 11	
Engine Size	1456 ÷ 11	Engine Size	5728 ÷ 25		Engine Size	7264 ÷ 11	
Cool Factor	5834 ÷ 25	Cool Factor	5925 ÷ 10		Cool Factor	8787 ÷ 10	
Round the answer	rs to two decimal places.	Round the answer	s to two decimal places.		Round the answer	s to two decimal places.	
Top Speed (mph)	5274 ÷ 50	Top Speed (mph)	5828 ÷ 11		Top Speed (mph)	6075 ÷ 12	
Engine Size	5828 ÷ 12	Engine Size	8356 ÷ 12		Engine Size	6345 ÷ 15	
Cool Factor	3194 ÷ 10	Cool Factor	7475 ÷ 11		Cool Factor	6474 ÷ 20	
Round the answer	rs to two decimal places.	Round the answer	s to two decimal places.		Round the answers to two decimal places.		
Top Speed (mph)	4928 ÷ 20	Top Speed (mph)	4295 ÷15		Top Speed (mph)	7742 ÷ 50	
Engine Size	5138 ÷ 50	Engine Size	5295 ÷ 20		Engine Size	2457 ÷ 12	
Cool Factor	4837 ÷ 12	Cool Factor	5829 ÷ 25		Cool Factor	1175 ÷ 11	
Round the answers to two decimal places. Round the answers to two decimal places. Round the answers to two decimal places.							

Top Speed (mph)	5352 ÷ 20				
Engine Size	6532 ÷ 50				
Cool Factor	6883 ÷ 15				
Round the answers to two decimal places.					

